A High Performance, Spatiotemporal Statistical Analysis System Based on a Spatiotemporal Cloud Platform
نویسندگان
چکیده
With the increase in size and complexity of spatiotemporal data, traditional methods for performing statistical analysis are insufficient for meeting real-time requirements for mining information from Big Data, due to both dataand computing-intensive factors. To solve the Big Data challenges in geostatistics and to support decision-making, a high performance, spatiotemporal statistical analysis system (Geostatistics-Hadoop) is proposed in this paper. The proposed system has several features: (1) Hadoop is enhanced to handle spatial data in a native format and execute a number of parallelized spatial analysis algorithms to solve practical geospatial analysis problems; (2) the Oozie-based workflow system is utilized to ease the operation and sharing of spatial analysis services; and (3) a private cloud platform based on Eucalyptus is leveraged to provide on-the-fly and elastic computing resources. Experimental results show that Geostatistics-Hadoop efficiently conducts rapid information mining and analysis of big spatiotemporal data sets, with the support of elastic computing resources from a cloud platform. The adoption of cloud computing and the Hadoop cluster to parallelize statistical calculations significantly improves the performance of Big Data analyses.
منابع مشابه
A comparison between the Kazerun (Iran) and the North Anatolian (Turkey) fault systems in fault interaction and seismicity migration based on the spatiotemporal analysis of earthquakes
The Kazerun Fault System (KFS) is a right-lateral strike slip fault system in the middle part of the Zagros seismogenic zone in Iran. Historical and instrumental earthquake data catalogs of this fault system show good evidence of fault interactions and seismic migrations. This study provides evidence for the migration of seismicity in the middle part of the Zagros region along the segments of t...
متن کاملSpatiotemporal Variations of Total Cloud Cover and Cloud Optical Thickness in Iran
A knowledge of cloud properties and spatiotemporal variations of clouds is especially crucial to understand the radiative forcing of climate. This research aims to study cloudiness in Iran using the most recent satellite data, powerful databases, and regional and seasonal analyses. In this study, three data series were used for the spatiotemporal variations of cloudiness in the country: A) Clou...
متن کاملSpatiotemporal Kriging with External Drift
In statistics it is often assumed that sample observations are independent. But sometimes in practice, observations are somehow dependent on each other. Spatiotemporal data are dependent data which their correlation is due to their spatiotemporal locations.Spatiotemporal models arise whenever data are collected across bothtime and space. Therefore such models have to be analyzed in termsof thei...
متن کاملBuilding Spatiotemporal Cloud Platform for Supporting Gis Application
Traditional geospatial information platforms are built, managed and maintained by the geoinformation agencies. They integrate various geospatial data (such as DLG, DOM, DEM, gazetteers, and thematic data) to provide data analysis services for supporting government decision making. In the era of big data, it is challenging to address the dataand computingintensive issues by traditional platforms...
متن کاملAn Event Reporting and Early-Warning Safety System Based on the Internet of Things for Underground Coal Mines: A Case Study
Fatal accidents associated with underground coal mines require the implementation of high-level gas monitoring and miner’s localization approaches to promote underground safety and health. This study introduces a real-time monitoring, event-reporting and early-warning platform, based on cluster analysis for outlier detection, spatiotemporal statistical analysis, and an RSS range-based weighted ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ISPRS Int. J. Geo-Information
دوره 6 شماره
صفحات -
تاریخ انتشار 2017